

Review Paper:

Sepsis: One of Medicine's Most Elusive Syndrome – A Systematic Review and Current Therapeutic Management

Kumar Aman and Kosey Sourabh*

Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, INDIA

*sourabhkosey@gmail.com

Abstract

Sepsis is a complex condition and can be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, leading to tissue hypoperfusion and organ failure culminating in death. In fact, since the early development of medicine, sepsis continues to represent a major health issue globally, with a mortality rate not less than 20% and rising prevalence. This review will discuss the most recent technologies and strategies in diagnosing and managing sepsis: Infection Control, Host Response Modulation and Hemodynamic Management. It discusses EGDT, Machine Learning (ML), Nanotechnology, HMGB1-targeted therapy, the role of sedatives, catheters, tubes, nutrition, glucose management and oxygen therapy. The pathophysiology of sepsis involves the complex interplay of immune activation and subsequent endothelial dysfunction, complement system activation, coagulation abnormalities and disturbances of metabolism, all contributing to widespread tissue damage and organ failure, if not treated.

This review also talks about diagnostic tools and biomarkers for the diagnosis of sepsis, severe sepsis and septic shock. Nanotechnology-based diagnostic techniques such as biosensors and bioreceptors, are very significant in identifying biological or chemical reactions in a patient suffering from sepsis, while in the management, antibiotics (within one hour) should be administered in all cases. Fluid resuscitation is also needed because fluid loss is very common in sepsis and often vasopressors are needed to maintain adequate perfusion pressure.

Keywords: Sepsis, Novel management, Recent advancement, Early detection, EGDT.

Introduction

Acute organ failure and a higher risk of mortality are linked to sepsis, a complicated illness that arises as a dysregulated host response to an infection. Given that this sickness needs rapid treatment, it is important to comprehend the presenting symptoms. Sepsis is still one of the leading causes of death worldwide and is rather common. Thus, sepsis is a serious

public health issue⁴³. Sepsis is a potentially lethal sickness that arises when the body reacts to an infection by damaging its tissues and organs¹⁰⁶. The phrase "one of the oldest and most elusive syndromes in medicine" has been used⁷. "Sepsis, according to Hippocrates, is the process by which wounds fester, marshes produce filthy air and flesh rots"⁶⁸.

After Semmelweis, Pasteur and others confirmed the germ theory, sepsis was reframed as a systemic illness, sometimes referred to as "blood poisoning," and thought to be caused by pathogenic organisms invading the host and then spreading via the bloodstream. Even if the instigating infection was successfully eradicated, many sepsis patients died, proving that germ theory was unable to adequately explain the pathophysiology of sepsis with the development of modern medicines. Therefore, scientists proposed that the pathophysiology of sepsis was driven by the host rather than the germ²³. Sepsis may now be identified and treated more quickly because of a significant amount of research and enhanced clinical procedures during the last 30 years.

A revised definition was created in 2016 that placed more emphasis on identifying organ failure in the setting of infection⁹⁷. A resolution to improve sepsis care, detection and prevention was voted by the World Health Assembly and WHO in 2017, designating sepsis as a global health priority⁸⁸.

Definition

Sepsis was defined internationally by the year 1991 as "the systemic inflammatory response (SIRS) to a microbial infection" (BOX 1) where SIRS is defined as at least two of the following symptoms: fever or body temp below 95°C, high white blood cell count, leukopenia, or neutrophilia, rapid breathing, or rapid heartbeat¹⁰⁷. Sepsis can result from a variety of infectious causes and septicemia is not a required situation nor a useful word, according to a 1992 international definition of sepsis which defined sepsis as a systemic inflammatory response to an infection¹⁰⁷. The board instead named the term "severe sepsis" to refer to situations in which acute organ failure complicates sepsis and "septic shock" were defined as sepsis exacerbated by either hyperlactatemia or low blood pressure that is resistant to fluid replacement.

Most of these concepts were approved by a second consensus panel in 2003⁶⁵, with the caveat that signs of a SIRS, such as rapid heartbeats or an elevated white-cell

count, can occur in several infectious and non-infectious conditions and therefore do not help in distinguishing sepsis from other conditions. To describe the infection-related disease that is made worse by immediate organ failure, the phrases "severe sepsis" and "sepsis" are thus sometimes used interchangeably.

Sepsis along with septic shock were defined by the Third International Consensus in 2016. These days, sepsis is described as both "an infection associated with organ injury distant from the site of infection" and "life-threatening organ dysfunction caused by a dysregulated host response to infection." However, septic shock is still classified as a subtype of sepsis when the death risk is significantly elevated and the anomalies in metabolism are serious enough to significantly raise the death risk. This necessitates the administration of vasopressors due to hypotension that endures throughout volume resuscitation⁹⁷. In the absence of hypovolemia six vasopressors are needed to keep the mean arterial pressure (MAP) at 65 mmHg or higher and the serum lactate level at 2 mmol/l⁵⁵.

Box 1 | 1991 Criteria for sepsis, severe sepsis and septic shock

The following definitions come from the 1991 Consensus Conference of the American College of Chest Physicians and Society of Critical Care Medicine.

Infection- The presence of germs or their penetration into the tissue is referred to as infection.

Sepsis- The SIRS to infection, or sepsis, is characterized by at least two of the following:

- Hypothermia
- Rapid heartbeats (90 beats per minute)
- A partial CO₂ pressure of less than 32 mmHg or a respiratory rate of more than 20 breaths per minute
- WBC counts greater than 12,000 or less than 4,000 per millilitre

Severe sepsis- Sepsis linked to hypotension, hyperfusion, or organ failure is referred to as severe sepsis. Lactataemia, oliguria, or a change in mental state are examples of end organ hypoperfusion disorders.

Septic shock- Sepsis accompanied by hypotension and irregular perfusion even when proper fluid (volume) replacement is administered and is known as septic shock. Lactic acidosis, oliguria, or a sudden change in mental state are examples of perfusion anomalies.

incidence rose by 7.3% yearly in Catalonia between 2008 and 2012, from 167.2 per 100,000 in 2008 to 261.8 per 100,000 in 2012, according to research³⁸. According to reports, sepsis kills 148.1 people out of every 100,000 as of 2017¹³. This amounts to around 8 million fatalities annually. By 2017, 48.9 million sepsis cases were there, out of which 11.0 million deaths occurred globally due to sepsis, accounting for around 20% of all deaths, according to Rudd et al⁹¹.

In high-income nations, its rate of mortality ranges from 15% to 30%, but in low-income ones, it might reach up-to 50% or more³⁶. One of the costliest illnesses to treat is sepsis. Sepsis costs around \$1.3 billion annually in Ontario, Canada and \$27 billion annually in the United States before the Coronavirus illness 2019 pandemic⁴⁰. Sepsis has an in-hospital mortality rate of up to 20% and an average hospital stay that is twice as long as any other deadly illness¹. The emergency room treats around 80% of septic cases, with the other patients being sent to other hospital departments⁸⁹.

In the intensive care unit (ICU), where it affects around 30% of patients and varies greatly by geographic location, sepsis is also very important⁹³. Fifty-five percent of all sepsis patients needed intensive care unit hospitalization, according to research conducted in the United States with over 170,000 cases⁸⁹.

Clinical Features: Acute organ malfunction and infection are the hosts reaction to an infection in sepsis. Death, acidosis and multiple organ failure can result from this cause, sepsis most frequently occurs in the lung (accounting for 64% of cases), abdomen (20%), circulation (15%) and malfunction³². Infections obtained in the community and diseases linked to healthcare facilities can result in severe sepsis and septic shock. Breathlessness, colorlessness, restlessness, excretion, anorexia, respiratory rate of $\geq 22/\text{min}$, altered mental state, rapid heartbeats and lack of oxygen are some of the symptoms, along with a temperature of $>38^{\circ}\text{C}$. Pneumonia-induced sepsis is characterized by sputum production, irregular breath sounds and hypothermia below 36°C ⁴⁵. About half of all cases begin with pneumonia, although urinary tract and intra-abdominal infections may occur first³.

Risk Factor

The risk of sepsis and septic shock grows with age, it is distributed in two ways, with infants having a higher risk and young adults having a lower risk. Additionally, because of underdeveloped immunity, the risk increases once again beyond the age of sixty⁷⁰. Sepsis and septic shock are linked to a higher chance of male gender. Because oestrogens have protective effects on cardiovascular and immunological response, the reduced incidence of sepsis in females may be explained³⁴. Sepsis and septic shock are made more likely by immunosuppressive drugs and comorbidities^{12,34}.

Epidemiology

In the United States, the incidence of severe sepsis was approximately 750000 cases per year (300 cases per 100,000 population), or 2.26 cases per 100 hospital discharges,⁸ according to 2001 research by Angus and colleagues⁸. Sepsis

Seasons can also have an impact on sepsis and septic shock, with a greater incidence in the winter. This is because lung infections, which are risk factors for sepsis, are more common in the winter²⁵. Additionally, hunger, poorness, illiteracy, the duration of the period between the occurrence of symptoms and the initiation of sepsis management and infection incorrect diagnosis are associated with sepsis and septic shock¹².

Box 2 | Signs and symptoms as per WHO¹¹³

Common signs and symptoms include:

- Hyperthermia or Hypothermia and shivering
- Unsureness
- Problem with breathing
- Skin becomes clammy and sweaty
- Severe body pain
- Tachycardia, weak pulse, or hypotension
- Less urine output.

Symptoms for children include:

- Rapid breathing
- convulsions
- colourless skin
- Feeling lazy
- Problem in getting up from bed
- Sensation of coldness to the touch

For children below 5 years of age, it can cause difficulty in feeding, often vomiting or decrement in urination.

Pathophysiology

Sepsis is a complicated and sometimes fatal illness brought on by the body's overreaction to an infection. A unregulated host action to an infection, which turns into extensive inflammation, immune system dysfunction and eventually organ failure, is what defines its pathogenesis. (Fig. 1)

Box 3 | Risk Factors as per WHO^{113,22}

Anyone suffering from an infection, severe trauma, or significant non-communicable disease has the potential to develop sepsis, however, certain groups are more susceptible than others such as:

- Elder or aged persons
- Pregnant women
- New born baby
- Patients admitted in hospital
- Patients in ICU
- Patients with poor immune systems (ex. In case of HIV, cancer, etc.)
- Patients with severe medical conditions (for example CKD, AKD, cirrhosis, etc.).

Immune System Activation and Dysregulation: The onset of sepsis is triggered by an infection that activates the immune system. "Pathogen-Associated Molecular Patterns (PAMPs) from the infectious agents are identified by the

host's pattern recognition receptors (PRRs), leading to an exaggerated immune response^{5,61}. This action is identified by the reveal of pro-inflammatory cytokines, resulting in a "cytokine storm"²⁸. The immune system's overreaction can damage host tissues and organs, a phenomenon known as collateral damage. During this phase, the body also experiences systemic inflammation, fever and shock, which can progress to "Multiple Organ Dysfunction Syndrome (MODS)"^{74,80}.

Endothelial Dysfunction and Microcirculatory Failure:

Endothelial cells, which cover the blood vessels, run an important part in managing vascular homeostasis⁷⁷. In sepsis, these cells become activated and shift to a pro-inflammatory state⁴⁷. The cytokine storm damages the endothelial cells, leading to impaired vascular permeability and dysregulated vascular tone^{31,47,53,77}. The endothelial injury disrupts the glycocalyx layer, which normally protects the endothelium and regulates leukocyte adhesion^{79,102}. The loss of the glycocalyx enhances leukocyte and platelet adhesion, contributing to microvascular thrombosis⁶³. These microvascular clots further exacerbate organ dysfunction by impairing blood flow and oxygen delivery¹⁶.

Aggregated System Activation: The aggregated system, a part of the non-specific immune system response, is also activated in sepsis. This immune system improves the capacity of antibodies and phagocytic cells to clean microorganism and injured cells. However, in sepsis, more activation of the aggregated system leads to the production of anaphylatoxins (e.g. C5a) which exacerbate inflammation and contribute to tissue damage⁶. The complement system also interacts with the coagulation cascade, promoting thrombosis and further contributing to microvascular dysfunction²⁴.

Coagulation Abnormalities: Sepsis induces a hypercoagulable state characterized by the widespread stimulation of the coagulation cascade⁹⁶. Tissue factor (TF) released from damaged endothelial cells and immune cells initiates coagulation, leading to the formation of fibrin-rich clots⁴⁸. These clots obstruct blood mobility in the small vessels, resulting in tissue hypoxia and organ dysfunction. Simultaneously, the body's natural decoagulant systems such as the protein C system, are impaired, further promoting coagulation. This dysregulated coagulation can lead to distributed intravascular coagulation, a serious condition where clotting and bleeding take place simultaneously⁸⁶.

Metabolic Changes and Cellular Dysfunction: As sepsis progresses, cellular metabolism becomes increasingly impaired. The combination of hypoxia, mitochondrial dysfunction and altered metabolic pathways leads to anaerobic glycolysis and the accumulation of lactic acid, contributing to metabolic acidosis. These metabolic changes, coupled with impaired oxygen utilization, result in cellular energy failure and exacerbate organ dysfunction¹³.

In summary, the pathogenesis of sepsis includes a complicated interplay of immune stimulation, endothelial dysfunction, complement system activation, coagulation

abnormalities and metabolic disturbances. This cascade of events leads to widespread tissue damage, organ failure, and, if not promptly treated, death.

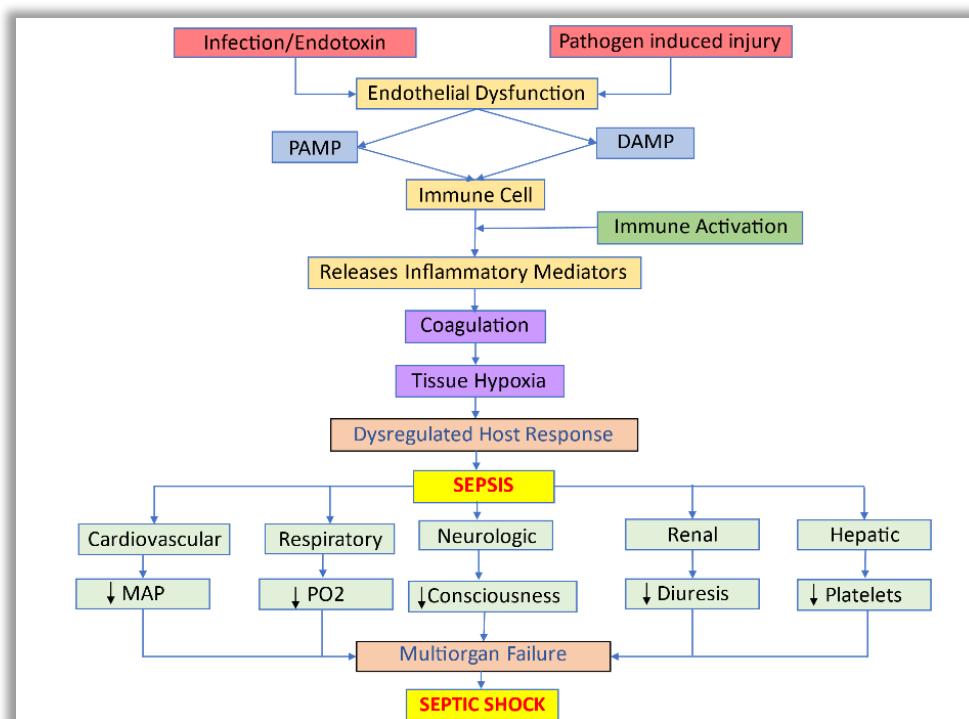


Fig. 1: Showing pathophysiology of Sepsis

Diagnosis

Box 4 | Diagnostic Benchmark for Sepsis and Septic Shock^{64,65}

Sepsis (Verified or non-verified infection)

General markers:

- Body temperature more than 38.3°C
- Body temperature less than 36°C
- Rapid heartbeats (more than 90 beats per minute)
- Rapid breathing (more than 30 breaths per minute)
- Confusion
- Considerable edema or fluid gains is more than fluid loss
- Increased glucose level (6.7 mmol/L when no diabetes)

Inflammatory markers:

- WBC (White Blood Cell) count, more than 12,000/mm³
- WBC (White Blood Cell) count, less than <4000/mm³
- Normal white blood cell counts with more than 10% immature forms
- Raised plasma C-reactive protein (more than 2 SD above the normal range)
- Increased plasma procalcitonin (more than 2 SD the normal range)

Leucocyte surface markers:

- Cell Surface antigen (CD11b)
- Intercellular Adhesion Molecule (ICAM-1)
- Cell Surface Antigen 63
- Cell Surface Antigen 64
- Cell Surface Antigen 66b

Leucocyte products:

- Cell Surface-adhesion Soluble L-selectin Antigen 62L
- Cell Surface-adhesion Soluble L-selectin Antigen 62P

Box 4 | Continued^{64,65}**Hemodynamic markers:**

- Hypotension (systolic blood pressure, less than 90mm Hg, while mean arterial pressure is less than 70mm Hg)
- Increased SvO_2 more than 70%
- Increased cardiac output more than 3.5 liter/min/square meter of body-surface area

Peptides:

- Either Monocyte or macrophage
- TNF- α
- IL 1 α and IL 1 β
- IL 6, IL8, IL10 and IL 18

Elongated cellular products:

- Soluble vascular cell adhesion molecule (sVCAM-1=CD106)
- Soluble E-selectin (=CD62E)

Organ-dysfunction markers:

- Low concentration of oxygen in artery.
- Production of small amount of urine (less than 0.5ml/kg/hr)
- Elevated creatinine level (value greater than 0.5mg/dl)
- Problem in clot formation
- Paralysis in bowel movement
- Depletion of platelets count in the blood (less than 100,000/mm³)
- Elevated serum bilirubin level (value greater than 4 mg/dl)

Differential tissue-perfusion:

- More lactate acid in blood (more than 1 mmol/L)
- Declined capillary fulfilment

Acute phase reactants:

- C reactive protein
- Iron storing protein
- Iron binding protein present in milk
- Neopterin
- Precursor of calcitonin hormone
- Apolipoproteins

Severe sepsis:

- Sepsis along with organ dysfunction

Septic shock:

- Sepsis as well as hypotension

Inflammation and infection along with either hypothermia or hyperthermia with a rectal temperature of less than 38.5°C or more than 35°C respectively, are diagnostic criteria for sepsis. Hypothermia may be established by one of the following signs of reduced organ function, but not tachycardia, elevated blood lactate level, hypoxemia and altered mental state. For infants as well as children with paediatric ranges of 75% to 80%, a mixed vein-oxygen limit level greater than 70% is considered normal. Children often have a cardiac index between 3.5L and 5.5L per minute per square meter^{7,65}.

Box no. 4 lists a few criteria for diagnosing sepsis and septic shock^{64,65}. In contrast to a confined microbial infection, sepsis has a dysregulated, broad host response with ambiguous indications and symptoms¹⁰⁹. Patients who are hypoxic and on antibiotic therapy after surgery may have a low platelet count but no infection symptoms, or they may

be over-diagnosed with sepsis, which is often misdiagnosed in these patients¹⁰⁹.

Though their previous clinical application is restricted by the analysis time of 24 to 48 hours²⁰, culture reports from biological fluids, especially blood, are a confirming and reliable diagnostic approach in addition to diagnosis based on symptoms. Both infection and inflammation raise C-reactive protein (CRP), an acute-phase protein that is often studied. Its application in the diagnosis of sepsis, is limited by its lack of specificity, despite its great sensitivity. Often reported measure, procalcitonin (PCT), is produced after systemic inflammation caused by a bacterial infection and may be more specific than CRP⁴⁹.

Use of Nanotechnologies in the diagnosis of sepsis

Sepsis is commonly detected with biosensors that track chemical or biological reactions. Biosensors are devices that

provide a signal proportional to the levels of analytes in biological material. Among the several components that comprise biosensors generally are analytes, bioreceptors, signal transducers and display screens⁶⁷. Biosensors use a limited number of samples to measure tiny signals from different body fluids⁴⁴. CRP, PCT and Interleukin-6 are among the few biomarkers which have successfully been used in the clinical diagnosis of sepsis (box 4)^{51,103}.

Management of Sepsis

Infection control: The actual source of sepsis is infection which also starts and maintains immunological dysregulation. Therefore, every effort must be made to remove both the illness and its cause. Even in situations when an infection cannot be conclusively confirmed and no any particular bacterium is withdrawn which can take place in more than 30% of sepsis forbearers (patients), antibiotics should always be administered^{62,94}.

Antibiotics: Initial antibiotic administration is recommended exclusively in serious sepsis such as septic shock. Nonetheless, the idea is that antibiotics ought to be given within an hour of sepsis being diagnosed⁹⁸. Adequate antimicrobial treatment must be begun right away and not postponed until culture data are acquired. According to the uncertain source of sickness, flora and resistance trends^{59,114}, patients should be administered with broad-spectrum antibiotic treatment that may occupy all plausible species. Particularly in the most severe instances, combination antimicrobial treatment is better than single-agent therapy^{71,100}. The selection of antimicrobials should be reassessed when culture results are obtained and wherever feasible, de-escalation to a smaller range should be carried out. This strategy will lower expenses, minimize toxicity, aid stop the emergence of medication resistance and maximize therapeutic efficacy⁶⁰.

Source Removal: Source control or also called as source removal, which is regarded as best practice in the management of sepsis, involves removing diseased tissue, draining an abscess, or removing an infected equipment. Open surgery or percutaneous drainage can be used to manage the source. Inadequate early source management was linked to a 28-day mortality increase from 26.7% to 42.9%, according to observational data^{18,69}. Future RCTs are unlikely to challenge this conventional method since source removal is an important footprint in the therapy of sepsis.

Hemodynamic management

Fluids are always part of hemodynamic therapy and vasoactive drugs are mostly given when shock is present:

IV Fluids: Since sepsis is often accompanied by both exterior and internal fluid losses, fluid therapy is always required. Because sepsis is usually linked to vasodilation, which raises blood volume, patients may also be dehydrated as a result of consuming less fluids¹¹⁰. Salvation, optimization, stability and de-escalation⁶³ are the four stages

of hemodynamic therapy for patients with sepsis and septic shock. Providing rapid hemodynamic support to avoid organ damage and shock is the main goal of these four stages.

Before monitoring is achieved during the salvage phase of therapy, a large amount of fluid should be administered³³. In the optimization stage, a customized strategy is required. When a patient is severely asleep and on mechanical ventilation, passive leg lifting and other indicators of fluid responsiveness might be useful. Although it is not as simple, it is possible to evaluate the changes in stroke volume during passive leg lifting. The most effective method for customizing fluid treatment is often a fluid challenge strategy. A reduced accelerated phenomenon, in which the balance of fluid should turn negative, must be carried out following the stabilization phase³³.

Early goal-directed treatment (EGDT): Early goal-directed treatment (EGDT) is one facet of sepsis care that is becoming more and more contentious. When compared to traditional therapy, which lacked clear objectives for assessing the quality of the response, Rivers et al⁹⁰ demonstrated in landmark single-center research that EGDT helped forbearers with septic shock in the ED setting to minimize death. By titrating hemodynamic resuscitation with intravenous fluids, dobutamine and packed RBC transfusion, the EGDT approach aimed to maintain a central venous oxygen saturation (ScvO₂) of more than 70%. However, larger, more recent multicentre studies were unable to support these positive results, may be as a result of the control group's superior patient care⁶⁶.

Vasoactive drugs: To prevent persistent hypotension, which can impede tissue perfusion, vasoactive medications are also commonly needed and initiated concurrently with fluid delivery. Because it has fewer side effects and mortality, noradrenaline is advised over dopamine^{29,30}.

As an inotropic drug, dobutamine is frequently combined with noradrenaline to enhance cardiac results and O₂ delivery to the group of cells. Analyzing variations in blood lactate levels can assist in determining how well the resuscitation worked⁵⁴. Vasopressor assistance is frequently necessary to maintain perfusion pressure in individuals suffering from septic shock. The majority of forbearers with septic shock who need vasopressor therapy, should start with an arterial pressure of 65 mm of Hg.

In contrast to a lower aim (65–70 mm Hg), Asfar and colleagues showed that a higher blood pressure 80 to 85 mm Hg was not linked to improved survival¹⁴. Selepressin⁹² and angiotensin II⁵⁶ are two novel vasopressors that were released in 2017–18.

According to initial research, these medications effectively raise blood pressure and lower noradrenaline dosage, which may offer a novel way to lessen the need for catecholamines in septic shock.

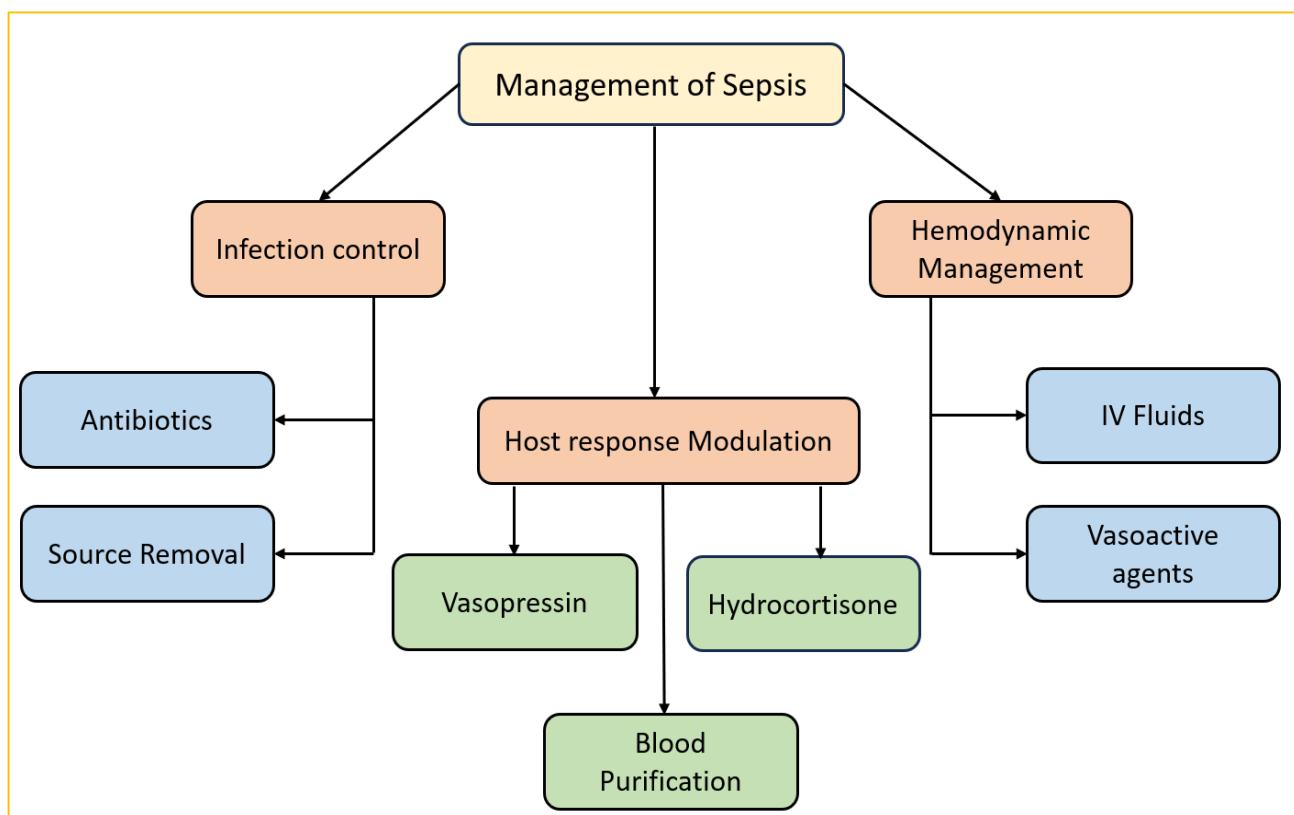


Fig. 2: Showing management of Sepsis

Modulation of the host response

Hydrocortisone: There are current issues with using corticosteroids in sepsis patients. Early research suggested that using high doses of methylprednisolone⁹ followed by lower doses of hydrocortisone may be beneficial, but bigger trials have not confirmed this conclusion¹⁰¹. Guidelines from the Society of Critical Care Medicine and the European Society of Intensive Care Medicine, as well as systematic reviews^{10,46,82}, indicate that the use of corticosteroids may be good for sepsis patients, but only in cases when shock is present. People with serious septic shock, often characterized by the requirement for comparatively large noradrenaline dosages to fulfill mean arterial pressure approximately or above 1 μ g/kg/min are the only ones who should get corticosteroid treatment⁵⁰.

Nonetheless, using steroids in septic shock had shown positive results in two sizable, multicentre trials. In the first, the Adrenal multicentre research, which had 3800 patients, the glucocorticoid group saw shorter durations of shock and intensive care unit stays than the placebo group, but the primary endpoint indicated a negative improvement⁷⁹. Consequently, modest dosages of hydrocortisone did not enhance the survival rate; nevertheless, the patients were not terribly sick as seen by the 29% placebo fatality rate¹⁰⁵.

An addition of hydrocortisone along with fludrocortisone was linked to a decreased all-source of 90-day mortality when contrast to the placebo in the second, larger multicentre study, which involved 1241 patients¹¹. However, multicentre research in France showed that patients treated

with hydrocortisone had significantly reduced ICU, hospital and 6-month mortality rates, while the placebo group had a mortality rate over 50% and a mean lactate level of 4 mmol/l⁸⁰. Therefore, a daily dose of 200 mg of hydrocortisone is recommended for patients with severe septic shock³⁹.

Vasopressin: Vasopressin can also be employed to modify the host's reaction. The hormone vasopressin affects water metabolism and renal function. Vasopressin is administered a dose of 0.03–0.05 units per minute to patients with sepsis to replace insufficient vasopressin levels. Vasopressin is normally given as a second-line drug when noradrenaline is not working. However, when given to patients in septic shock early on, it can enhance renal function, raise urine production, lower fluid requirements and lessen the creation of oedema¹¹¹.

Blood Purification: Excess medicine and endotoxins can be eliminated using the extracorporeal purification of blood which also has considerable logic. However, none of the existing modulations has consistently reduced mortality.

It is not advised to begin renal replacement treatment prior to the development of renal failure⁸¹. The polymyxin B hemoperfusion method is a new treatment strategy for endotoxin elimination that is currently being studied but has shown mixed outcomes. exhibiting a non-significant rise in mortality in subsequent studies, while it demonstrated an improvement²⁷ in results during the early trials^{26,83}.

Table 1

Selected clinical biological response modifiers used in clinical trials for severe sepsis or septic shock

Action	Category	Type of Study	Agent	Result
Endocrine Abnormalities ¹¹²	Vasopressors	Prospective RCT	Arginine vasopressin	ineffective
Endocrine Abnormalities ¹²	Corticosteroids	Meta-analysis	Corticosteroid	Ineffective or Moderate effect
Endotoxin ²⁸	Monospecific antibody	Prospective RCT	HA-1A	ineffective
CD14 ¹⁵	Monospecific antibody	Prospective RCT	IC14	Not clear
TNF ^{1,25}	Monospecific antibody	Prospective RCT	BAY 1351	ineffective
TNF ^{2,42}	Immunoadhesin	Prospective RCT	Lenercept, Etanercept	ineffective
IL-1 ⁷⁸	Receptor antagonist	Prospective RCT	Anakinra	ineffective
Nitric oxide ¹⁷	L-N-methylarginine	Prospective RCT	546C88	Moderate effect
Nitric oxide ⁸⁵	Reducing agents	Prospective RCT	Methylene blue	Moderate effect
Intravascular Coagulation ³	Tissue factor pathway inhibitor	Prospective RCT	Tifacogin	ineffective
Intravascular Coagulation ¹⁸	Antithrombin	Prospective RCT	Antithrombin	ineffective
Intravascular Coagulation ⁷³	Anti-tissue factor antibody	Prospective RCT	ALT-836	ineffective
Intravascular Coagulation ¹¹⁵	Heparin	Meta-Analysis	Heparin salt	Moderate effect

A list of certain clinical biological response modifiers is given in table 1 which has been used for septic shock and serious sepsis patients in several lessons. The target, drug class, study type, name of the drug and result are mentioned.

Other forms of assistance

Employing sedatives: Many hospitals have now put procedures in place to reduce needless sedation after realizing that excessive sedative usage is likely to be hazardous^{57, 99}. While early movement of severely sick patients enhances delirium and functional result and shortens the time of mechanical breathing, awake individuals are better equipped to recover⁹⁵.

Catheters and tubes: Ventilator-associated pneumonia rates have declined, in part due to better oral hygiene and endotracheal tube engineering that reduces biofilm development and microaspiration⁴¹. Nosocomial infections have decreased leading to advancements in intravascular catheter design, placement method, maintenance and prompt removal, as well as criteria for eliminating unneeded urine catheters^{87,104}.

Lung protective ventilation: It was demonstrated in 2000 that reduced tidal volume breathing significantly improved survival in ARDS patients,⁴ with an absolute decrease in in-hospital mortality of 8.9%. Follow-up research revealed that this effect also applied to sepsis patients with ARDS³⁷. Over

the past 15 years, a significant contributor to better result for people with sepsis and acute respiratory distress syndrome has been the use of low tidal volume and lung protective ventilation.

Glucose control and nutrition: The optimal time and level of nutritional assistance in sepsis therapy are still up for debate. Recent trials have shown little benefit from intensive enteral or parenteral supplementation, despite prior data, suggesting enteral feeding may prevent infection problems. Enteral nutrition is thus advised by the surviving sepsis campaign (SSC) as tolerated⁵⁸.

Although sepsis patients frequently have hyperglycemia, it is unclear what the ideal glucose goal is. In critically sick patients, it has been demonstrated that aiming for glucose levels between 80 and 110 mg/dL increases 90-day mortality. The SSC now advises taking insulin to keep blood glucose levels below 180 mg/dL as a result^{52,75}.

Recent advancements in the management of sepsis

Oxygen therapy for sepsis: Considering the respiratory issues that are typically linked to sepsis, oxygen treatment is one of the most important management measures for the condition. Severe sepsis causes acute respiratory distress and acute respiratory distress syndrome (ARDS), that is characterized by an insufficient oxygen supply that prevents oxygen from reaching tissues and organs. Oxygen

supplementation prevents organ failure, increases blood oxygen levels and enhances oxygen transport to tissues.

To prevent problems, a proper oxygen level is crucial in sepsis. While hyperoxia, or excessive oxygen consumption, can result in oxidative stress that harms cells and tissues, hypoxia causes malfunction in several organs. This oxidative stress raises inflammation and might be one of the contributing causes to the increased risk of blood clotting and possible consequences connected with DIC. Oxygen treatment needs to be closely watched to ensure that it increases oxygen saturation in a balanced manner without having any negative side effects⁷².

Role of HMGB1 for sepsis: Since high mobility group box 1 (HMGB1) is involved in all events that occur during inflammation, it is crucial in the treatment of sepsis. It is a nuclear protein that mediates inflammation and is either actively produced by immune cells during an inflammatory response or passively through sepsis-induced cell death. Elevated HMGB1 levels contribute to the characteristics of organ damage and are linked to systemic inflammatory responses.

HMGB1 targeting is emerging as a significant therapeutic option for sepsis treatment. HMGB1 inhibition lowers the heightened inflammatory response, which in turn regulates organ damage brought on by sepsis. A number of tactics have been used including the use of inhibitors, anti-HMGB1 antibodies and natural substances like glycyrrhizin, which reduce inflammation brought on by HMGB1. By improving survival in sepsis, these have led to the downregulation of downstream pro-inflammatory pathways and the prevention of tissue damage³⁵.

Use of nanotechnology: Nanotechnology offers promising approaches in the treatment of sepsis. Innovations in diagnostics and therapy may be provided through nanotechnology. Electrochemical and magnetic biosensors are among the most sensitive and speedy nanotechnology-based detection tools for the biomarkers of sepsis, for example, procalcitonin and C-reactive protein. The nano sensors facilitate an early diagnosis with much more accuracy and speed than conventional methods, thus guiding prompt therapeutic interventions.

Therapeutically, nanoparticle-based drug delivery systems improve drugs' solubility and stability and biodistribution within the body. They are very powerful in enhancing the effects of antibiotics by targeting the drug-resistant pathogen.

Nanoparticles can simultaneously deliver antibiotics and anti-inflammatory agents so that infection and inflammation in sepsis will be treated well. Furthermore, nanotechnology can enhance targeted drug delivery to specific tissues or pathogens reducing side effects while maximizing the efficacy of the treatment. Antimicrobial peptides and other

molecules functionalized nanoparticles enhance the delivery and targeting of the pathogen, leading to better control of sepsis-related complications⁸¹.

Machine Learning (ML): With the aid of massive applications in managing sepsis, ML enables its early detection, predictability of disease progression and enhanced clinical decision-making. The identified early signs of sepsis before symptoms evolve are aided through real-time analysis based on essential indication and different therapeutic data applied in the working of ML systems. This will further help to predict the occurrence of risk of developing sepsis and its expansion towards septic shock and mortality, thus providing reasons for clinicians to prioritize the treatment of higher-risk patients.

Apart from this, ML will assure adherence to guidelines to treatment by making the critical interventions on time like antibiotics and fluid administration, very crucial in optimizing survival. Furthermore, ML will be able to lower healthcare costs through efficient use of its resources and by minimizing inappropriate treatments or prolonged hospital stay⁷⁶.

Discussion

Despite a vast evolution of progress in medical care, sepsis represents a grand global health challenge with a great rate of disease and death. The review focuses on the pathophysiology of sepsis, the challenges associated with its diagnosis and the evolving strategies for managing it. Early and accurate detection is critical as sepsis progresses rapidly and has tremendous potential for causing life-threatening organ dysfunction. One of the landmark findings has been reviewed concerning the role of Machine Learning (ML) and nanotechnology in shifting the paradigm identification and management of sepsis.

In the analysis of large amounts of clinical data in real-time, ML-based systems have proved quite excellent at the early detection of sepsis, enhancement of adherence to treatment protocols and consequential mortality reduction. In addition, nanotechnology has improved diagnostic sensitivity with sophisticated biosensors and enhanced therapeutic efficacy with targeted drug delivery. These technologies hold much promise in managing sepsis including earlier diagnosis and tailoring of therapy or the management of sepsis. Another area of great interest is the modulation of host response using HMGB1-targeted therapies with the potential to reduce inflammation and organ damage. The inhibition of HMGB1 may potentially serve as an efficient strategy in mitigating the over-exuberant host immune response characterizing sepsis, presenting with this a new therapeutic target that could complement the antimicrobial therapies and the supportive therapies.

This is a step forward in this direction, yet there is still a gap in the real incorporation and implementation of treatment protocols, especially in low-resource settings. Though sepsis

bundles and EGDT have enhanced the result, compliance along with these guidelines varies. There is, hence, growing concern regarding stronger implementation strategies including educational initiatives, hospital-wide sepsis programs and the actual incorporation of technological advancement.

Conclusion

Sepsis remains a leading concern in the global health agenda with a considerable burden of mortality and significant healthcare expenses, especially in the acute care environment. This review addresses insights gained on the pathophysiology of sepsis and importance of early detection. Potentially promising new technologies may contribute to better management of sepsis. At the same time, with all of these advances, sepsis still remains a complex and multifaceted syndrome whose early diagnosis and timely intervention would prevent most undesirable secondary dysfunction and mortality effects.

Integration of ML and nanotechnology in the care of sepsis holds potential for improving early diagnosis, predicting progression of disease and refining the precision of therapeutic interventions. This set of technologies associated with conventional treatments like antibiotics, fluid resuscitation and vasopressor support, actually presents a more comprehensive approach in addressing sepsis. With these targeted inflammatory mediators such as HMGB1 and more, comes the new capability to modulate the host response, to decrease excessive inflammation, and, ultimately, to improve patient outcomes. Again, these advances need to be translated into clinical practice and should be further studied depending on standardizing protocols and ensuring easier access in low-resource settings.

In summary, with sustained improvement in sepsis management, there is a need for further research and innovative ideas to significantly reduce deaths involving sepsis leading to improved survival outcomes. Better care will also be achieved around the world. Sepsis management in the future should be guided by the integration of advanced diagnostics and targeted therapies with increased adherence to evidence-based guidelines to foster an even higher rate of survival as well as quality of care for patients with sepsis.

References

1. Abraham E., Anzueto A., Gutierrez G., Tessler S., San Pedro G., Wunderink R., Dal Nogare A., Nasraway S., Berman S., Cooney R. and Levy H., Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock, *The Lancet*, **351**(9107), 929-33 (1998)
2. Abraham E., Laterre P.F., Garbino J., Pingleton S., Butler T., Dugernier T., Margolis B., Kudsk K., Zimmerli W., Anderson P. and Reynaert M., Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with 1,342 patients, *Critical Care Medicine*, **29**(3), 503-10 (2001)
3. Abraham E., Reinhart K., Opal S., Demeyer I., Doig C., Rodriguez A.L., Beale R., Svoboda P., Laterre P.F., Simon S. and Light B., Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial, *Jama*, **290**(2), 238-47 (2003)
4. Acute Respiratory Distress Syndrome Network, Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome, *New England Journal of Medicine*, **342**(18), 1301-8 (2000)
5. Akira S., Uematsu S. and Takeuchi O., Pathogen recognition and innate immunity, *Cell*, **124**(4), 783-801 (2006)
6. Albrecht E.A. and Ward P.A., Complement-induced impairment of the innate immune system during sepsis, *Current Infectious Disease Reports*, **7**(5), 349-54 (2005)
7. Angus D.C. and Van der Poll T., Severe sepsis and septic shock, *New England Journal of Medicine*, **369**(9), 840-51 (2013)
8. Angus D.C., Linde-Zwirble W.T., Lidicker J., Clermont G., Carcillo J. and Pinsky M.R., Epidemiology of severe sepsis in the United States: analysis of incidence, outcome and associated costs of care, *Critical Care Medicine*, **29**(7), 1303-10 (2001)
9. Annane D., Sebille V. and Charpentier C., Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock, *ACC Current Journal Review*, **1**(12), 14-5 (2003)
10. Annane D., Bellissant E., Bollaert P.E., Briegel J., Keh D. and Kupfer Y., Corticosteroids for treating sepsis, *Cochrane Database of Systematic Reviews*, **12**, <https://doi.org/10.3389/fimmu.2021.709155> (2015)
11. Annane D., Renault A., Brun-Buisson C., Megarbane B., Quenot J.P., Siami S., Cariou A., Forceville X., Schwebel C., Martin C. and Timsit J.F., Hydrocortisone plus fludrocortisone for adults with septic shock, *New England Journal of Medicine*, **378**(9), 809-18 (2018)
12. Anane D., Bellissant E., Bollaert P.E., Briegel J., Confalonieri M., De Gaudio R., Keh D., Kupfer Y., Oppert M. and Meduri G.U., Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review, *Jama*, **301**(22), 2362-75 (2009)
13. Arora J., Mendelson A.A. and Fox-Robichaud A., Sepsis: network pathophysiology and implications for early diagnosis, *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*, **324**(5), R613-24 (2023)
14. Asfar P., Meziani F., Hamel J.F., Grelon F., Megarbane B., Anguel N., Mira J.P., Dequin P.F., Gergaud S., Weiss N. and Legay F., High versus low blood-pressure target in patients with septic shock, *New England Journal of Medicine*, **370**(17), 1583-93 (2014)
15. Axtelle T. and Pribble J., An overview of clinical studies in healthy subjects and patients with severe sepsis with IC14, a CD14-specific chimeric monoclonal antibody, *Journal of Endotoxin Research*, **9**(6), 385-9 (2003)

16. Bateman R.M., Sharpe M.D., Jagger J.E. and Ellis C.G., Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries, *Critical Care*, **19**(1), 1-4 (2015)

17. Bakker J., Grover R., McLuckie A., Holzapfel L., Andersson J., Lodato R., Watson D., Grossman S., Donaldson J. and Takala J., Glaxo Wellcome International Septic Shock Study Group. Administration of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002), *Critical Care Medicine*, **32**(1), 1-2 (2004)

18. Bl W., Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial, *JAMA*, **286**(15), 1869-78 (2001)

19. Bone R.C., Sibbald W.J. and Sprung C.L., The ACCP-SCCM consensus conference on sepsis and organ failure, *Chest*, **101**(6), 1481-3 (1992)

20. Carrigan S.D., Scott G. and Tabrizian M., Toward resolving the challenges of sepsis diagnosis, *Clinical Chemistry*, **50**(8), 1301-14 (2004)

21. Cavaillon J.M., Singer M. and Skrecki T., Sepsis therapies: learning from 30 years of failure of translational research to propose new leads, *EMBO Molecular Medicine*, **12**(4), e10128 (2020)

22. Cecconi M., Evans L., Levy M. and Rhodes A., Sepsis and septic shock, *The Lancet*, **392**(10141), 75-87 (2018)

23. Cerra F.B., The Systemic Septic Response: Multiple Systems Organ Failure, *Critical Care Clinics*, **1**(3), 591-607 (1985)

24. Cohen J., The immunopathogenesis of sepsis, *Nature*, **420**(6917), 885-91 (2002)

25. Cohen J. and Carlet J., INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis, *Critical Care Medicine*, **24**(9), 1431-40 (1996)

26. Coudroy R., Payen D., Launey Y., Lukaszewicz A.C., Kaaki M., Veber B., Collange O., Dewitte A., Martin-Lefevre L., Jabaudon M. and Kerforne T., Modulation by polymyxin-B hemoperfusion of inflammatory response related to severe peritonitis, *Shock*, **47**(1), 93-9 (2017)

27. Cruz D.N., Antonelli M., Fumagalli R., Foltran F., Brienza N., Donati A., Malcangi V., Petrini F., Volta G., Pallavicini F.M. and Rottoli F., Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial, *Jama*, **301**(23), 2445-52 (2009)

28. DC A., E5 murine monoclonal antiendotoxin antibody in Gram-negative sepsis: A randomized controlled trial, *JAMA*, **283**(13), 1723-30 (2000)

29. De Backer D., Aldecoa C., Njimi H. and Vincent J.L., Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis, *Critical Care Medicine*, **40**(3), 725-30 (2012)

30. De Backer D., Biston P., Devriendt J., Madl C., Chochrad D., Aldecoa C., Brasseur A., Defrance P., Gottignies P. and Vincent J.L., Comparison of dopamine and norepinephrine in the treatment of shock, *New England Journal of Medicine*, **362**(9), 779-89 (2010)

31. Dejana E. and Orsenigo F., Endothelial adherens junctions at a glance, *Journal of Cell Science*, **126**(12), 2545-9 (2013)

32. Dellinger R.P., Levy M.M., Rhodes A., Annane D., Gerlach H., Opal S.M., Sevransky J.E., Sprung C.L., Douglas I.S., Jaeschke R. and Osborn T.M., Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012, *Critical Care Medicine*, **41**(2), 580-637 (2013)

33. Dellinger R.P., Levy M.M., Carlet J.M., Bion J., Parker M.M., Jaeschke R., Reinhart K., Angus D.C., Brun-Buisson C., Beale R. and Calandra T., Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008, *Critical Care Medicine*, **36**(1), 296-327 (2008)

34. De La Rica A.S., Gilsanz F. and Maseda E., Epidemiologic trends of sepsis in western countries, *Annals of Translational Medicine*, **4**(17), 325 (2016)

35. Deng C., Zhao L., Yang Z., Shang J.J., Wang C.Y., Shen M.Z., Jiang S., Li T., Di W.C., Chen Y. and Li H., Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury, *Acta Pharmacologica Sinica*, **43**(3), 520-8 (2022)

36. Dugani S., Veillard J. and Kissoon N., Reducing the global burden of sepsis, *Cmaj*, **189**(1), E2-3 (2017)

37. Eisner M.D., Thompson T., Hudson L.D., Luce J.M., Hayden D., Schoenfeld D., Matthay M.A. and Acute Respiratory Distress Syndrome Network, Efficacy of low tidal volume ventilation in patients with different clinical risk factors for acute lung injury and the acute respiratory distress syndrome, *American Journal of Respiratory and Critical Care Medicine*, **164**(2), 231-236 (2001)

38. Esposito S., De Simone G., Boccia G., De Caro F. and Pagliano P., Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches, *Journal of Global Antimicrobial Resistance*, **10**(3), 204-12 (2017)

39. Evans L., Rhodes A., Alhazzani W., Antonelli M., Coopersmith C.M., French C., Machado F.R., McIntyre L., Ostermann M., Prescott H.C. and Schorr C., Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021, *Critical Care Medicine*, **49**(11), e1063-143 (2021)

40. Farrah K., McIntyre L., Doig C.J., Talarico R., Taljaard M., Krahn M., Ferguson D., Forster A.J., Coyle D. and Thavorn K., Sepsis-associated mortality, resource use and healthcare costs: a propensity-matched cohort study, *Critical Care Medicine*, **49**(2), 215-27 (2021)

41. Fernandez J.F., Levine S.M. and Restrepo M.I., Technologic advances in endotracheal tubes for prevention of ventilator-associated pneumonia, *Chest*, **142**(1), 231-8 (2012)

42. Fisher Jr. C.J., Agosti J.M., Opal S.M., Lowry S.F., Balk R.A., Sadoff J.C., Abraham E., Schein R.M. and Benjamin E., Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion

protein, *New England Journal of Medicine*, **334**(26), 1697-702 (1996)

43. Fleischmann C., Scherag A., Adhikari N.K., Hartog C.S., Tsaganos T., Schlattmann P., Angus D.C. and Reinhart K., Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations, *American Journal of Respiratory and Critical Care Medicine*, **193**(3), 259-72 (2016)

44. Formisano N., A study on the optimisation of electrochemical impedance spectroscopy biosensors, Doctoral dissertation, University of Bath (2015)

45. Gauer R., Forbes D. and Boyer N., Sepsis: diagnosis and management, *American Family Physician*, **101**(7), 409-18 (2020)

46. Gibbison B., López-López J.A., Higgins J.P., Miller T., Angelini G.D., Lightman S.L. and Annane D., Corticosteroids in septic shock: a systematic review and network meta-analysis, *Critical Care*, **21**(1), 1-8 (2017)

47. Goldenberg N.M., Steinberg B.E., Slutsky A.S. and Lee W.L., Broken barriers: a new take on sepsis pathogenesis, *Science Translational Medicine*, **3**(88), 88ps25 (2011)

48. Gould T.J., Vu T.T., Swystun L.L., Dwivedi D.J., Mai S.H., Weitz J.I. and Liaw P.C., Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms, *Arteriosclerosis, Thrombosis and Vascular Biology*, **34**(9), 1977-84 (2014)

49. Gunsolus I.L., Sweeney T.E., Liesenfeld O. and Leedeboer N.A., Diagnosing and managing sepsis by probing the host response to infection: advances, opportunities and challenges, *Journal of Clinical Microbiology*, **57**(7), 10-128 (2019)

50. Heming N., Sivanandamoorthy S., Meng P., Bounab R. and Annane D., Immune effects of corticosteroids in sepsis, *Frontiers in Immunology*, **9**, 1736 (2018)

51. Henriquez-Camacho C. and Losa J., Biomarkers for sepsis, *BioMed Research International*, **2014**(1), 547818 (2014)

52. Heart T.N., Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial, *JAMA: The Journal of the American Medical Association*, **307**(8), 795 (2012)

53. Ince C. and Sinaasappel M., Microcirculatory oxygenation and shunting in sepsis and shock, *Critical Care Medicine*, **27**(7), 1369-77 (1999)

54. Jones A.E., Shapiro N.I., Trzeciak S., Arnold R.C., Claremont H.A. and Kline J.A., Emergency Medicine Shock Research Network (EMShockNet) Investigators. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial, *Jama*, **303**(8), 739-46 (2010)

55. Karlsson S., Varpula M., Ruokonen E., Pettilä V., Parviainen I., Ala-Kokko T.I., Kolho E. and Rintala E.M., Incidence, treatment and outcome of severe sepsis in ICU-treated adults in Finland: the Finnsepsis study, *Intensive Care Medicine*, **33**(3), 435-43 (2007)

56. Khanna A., English S.W., Wang X.S., Ham K., Tumlin J., Szerlip H., Busse L.W., Altawee L., Albertson T.E., Mackey C. and McCurdy M.T., Angiotensin II for the treatment of vasodilatory shock, *New England Journal of Medicine*, **377**(5), 419-30 (2017)

57. Kollef M.H., Levy N.T., Ahrens T.S., Schaiff R., Prentice D. and Sherman G., The use of continuous iv sedation is associated with prolongation of mechanical ventilation, *Chest*, **114**(2), 541-8 (1998)

58. Koretz R.L., Avenell A., Lipman T.O., Braunschweig C.L. and Milne A.C., Does enteral nutrition affect clinical outcome? A systematic review of the randomized trials: CME, *Official journal of the American College of Gastroenterology| ACG*, **102**(2), 412-29 (2007)

59. Osborn L., Leukocyte adhesion to endothelium in inflammation, *Cell*, **62**(1), 3-6 (1990)

60. Kumar A., Zarychanski R., Light B., Parrillo J., Maki D., Simon D., Laporta D., Lapinsky S., Ellis P., Mirzanejad Y. and Martinka G., Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis, *Critical Care Medicine*, **38**(9), 1773-85 (2010)

61. Kumar S., Ingle H., Prasad D.V. and Kumar H., Recognition of bacterial infection by innate immune sensors, *Critical Reviews in Microbiology*, **39**(3), 229-46 (2013)

62. Lakbar I., Munoz M., Pauly V., Orleans V., Fabre C., Fond G., Vincent J.L., Boyer L. and Leone M., Septic shock: incidence, mortality and hospital readmission rates in French intensive care units from 2014 to 2018, *Anaesthesia Critical Care & Pain Medicine*, **41**(3), 101082 (2022)

63. Leligdowicz A., Chun L.F., Jauregui A., Vessel K., Liu K.D., Calfee C.S. and Matthay M.A., Human pulmonary endothelial cell permeability after exposure to LPS-stimulated leukocyte supernatants derived from patients with early sepsis, *American Journal of Physiology-Lung Cellular and Molecular Physiology*, **315**(5), L638-44 (2018)

64. Lever A. and Mackenzie I., Sepsis: definition, epidemiology and diagnosis, *Bmj*, **335**(7625), 879-83 (2007)

65. Levy M.M., Fink M.P., Marshall J.C., Abraham E., Angus D., Cook D., Cohen J., Opal S.M., Vincent J.L. and Ramsay G., 2001 sccm/esicm/accp/ats/sis international sepsis definitions conference, *Critical Care Medicine*, **31**(4), 1250-6 (2003)

66. Levy M.M., Evans L.E. and Rhodes A., The surviving sepsis campaign bundle: 2018 update, *Intensive Care Medicine*, **44**(6), 925-8 (2018)

67. Li Y.C. and Lee I.C., The current trends of biosensors in tissue engineering, *Biosensors*, **10**(8), 88 (2020)

68. Cerra F.B., The Systemic Septic Response: Multiple Systems Organ Failure, *Critical Care Clinics*, **1**(3), 591-607 (1985)

69. Marshall J.C. et al, Source control in the management of severe sepsis and septic shock: an evidence-based review, *Critical Care Medicine*, **32**(11), S513-26 (2004)

70. Martín S., Pérez A. and Aldecoa C., Sepsis and immunosenescence in the elderly patient: a review, *Frontiers in Medicine*, **4**, 20 (2017)

71. Micek S.T., Welch E.C., Khan J., Pervez M., Doherty J.A., Reichley R.M. and Kollef M.H., Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to Gram-negative bacteria: a retrospective analysis, *Antimicrobial Agents and Chemotherapy*, **54**(5), 1742-8 (2010)

72. Minasyan H., Oxygen therapy for sepsis and prevention of complications, *Acute and Critical Care*, **37**(2), 137 (2022)

73. Morris P.E., Steingrub J.S., Huang B.Y., Tang S., Liu P.M., Rhode P.R. and Wong H.C., A phase I study evaluating the pharmacokinetics, safety and tolerability of an antibody-based tissue factor antagonist in subjects with acute lung injury or acute respiratory distress syndrome, *BMC Pulmonary Medicine*, **12**(1), 1-8 (2012)

74. Nedeva C., Menassa J. and Puthalakath H., Sepsis: inflammation is a necessary evil, *Frontiers in Cell and Developmental Biology*, **7**(108), 108 (2019)

75. Nice-Sugar Study Investigators, Intensive versus conventional glucose control in critically ill patients, *New England Journal of Medicine*, **360**(13), 1283-97 (2009)

76. Ocampo-Quintero N., Vidal-Cortés P., del Río Carbajo L., Fdez-Riverola F., Reboiro-Jato M. and Glez-Peña D., Enhancing sepsis management through machine learning techniques: A review, *Medicina Intensiva*, **46**(3), 140-56 (2022)

77. Opal S.M., Van Der Poll T. Endothelial barrier dysfunction in septic shock, *Journal of Internal Medicine*, **277**(3), 277-93 (2015)

78. Opal S.M., Fisher C.J., Dhainaut J.F., Vincent J.L., Brase R., Lowry S.F., Sadoff J.C., Slotman G.J., Levy H., Balk R.A. and Shelly M.P., Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, doubleblind, placebo-controlled, multicenter trial, *Critical Care Medicine*, **25**(7), 1115-24 (1997)

79. Osborn L., Leukocyte adhesion to endothelium in inflammation, *Cell*, **62**(1), 3-6 (1990)

80. Osuchowski M.F., Welch K., Siddiqui J. and Remick D.G., Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality, *The Journal of Immunology*, **177**(3), 1967-74 (2006)

81. Pant A., Mackraj I. and Govender T., Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology, *Journal of Biomedical Science*, **28**(1), 1-30 (2021)

82. Pastores S.M., Annane D., Rochwerg B. and Corticosteroid Guideline Task Force of SCCM and ESICM. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part II): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017, *Intensive Care Medicine*, **44**(4), 474-477 (2018)

83. Payen D.M., Guilhot J., Launey Y., Lukaszewicz A.C., Kaaki M., Veber B., Potticher J., Joannes-Boyau O., Martin-Lefevre L., Jabaudon M. and Mimoz O., Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial, *Intensive Care Medicine*, **41**(6), 975-84 (2015)

84. Post E.H., Su F., Righy Shinotsuka C., Taccone F.S., Creteur J., De Backer D. and Vincent J.L., Renal autoregulation in experimental septic shock and its response to vasopressin and norepinephrine administration, *Journal of Applied Physiology*, **125**(6), 1661-9 (2018)

85. Preiser J.C., Lejeune P., Roman A., Carlier E., De Backer D., Leeman M., Kahn R.J. and Vincent J.L., Methylene blue administration in septic shock: a clinical trial, *Critical Care Medicine*, **23**(2), 259-64 (1995)

86. Pries A.R. and Secomb T.W., Blood flow in microvascular networks, In *Microcirculation*, Academic Press, **67**(4), 3-36 (2008)

87. Pronovost P., Needham D., Berenholtz S., Sinopoli D., Chu H., Cosgrove S., Sexton B., Hyzy R., Welsh R., Roth G. and Bander J., An intervention to decrease catheter-related bloodstream infections in the ICU, *New England Journal of Medicine*, **355**(26), 2725-32 (2006)

88. Reinhart K., Daniels R., Kissoon N., Machado F.R., Schachter R.D. and Finfer S., Recognizing sepsis as a global health priority—a WHO resolution, *New England Journal of Medicine*, **377**(5), 414-7 (2017)

89. Rhee C., Dantes R., Epstein L., Murphy D.J., Seymour C.W., Iwashyna T.J., Kadri S.S., Angus D.C., Danner R.L., Fiore A.E. and Jernigan J.A., Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014, *Jama*, **318**(13), 1241-9 (2017)

90. Rivers E., Nguyen B., Havstad S., Ressler J., Muzzin A., Knoblich B., Peterson E. and Tomlanovich M., Early goal-directed therapy in the treatment of severe sepsis and septic shock, *New England Journal of Medicine*, **345**(19), 1368-77 (2001)

91. Rudd K.E., Johnson S.C., Agesa K.M., Shackelford K.A., Tsoi D., Kievlan D.R., Colombara D.V., Ikuta K.S., Kissoon N., Finfer S. and Fleischmann-Struzek C., Global, regional and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study, *The Lancet*, **395**(10219), 200-11 (2020)

92. Russell J.A., Vincent J.L., Kjølbye A.L., Olsson H., Blemings A., Spapen H., Carl P., Laterre P.F. and Grundemar L., Selepressin, a novel selective vasopressin V 1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients, *Critical Care*, **21**(213), 1-0 (2017)

93. Sakr Y., Jaschinski U., Witboole X., Szakmany T., Lipman J., Źamendys-Silva S.A., Martin-Loeches I., Leone M., Lupu M.N., Vincent J.L. and ICON Investigators, Sepsis in intensive care unit patients: worldwide data from the intensive care over nations audit, In *Open forum infectious diseases*, US, Oxford University Press, **5**(12), 313 (2018)

94. Saravanan N., Photocatalytic degradation of methylene blue dye from aqueous solution using TiO₂ doped Activated carbon, *Res. J. Chem. Environ.*, **28**(1), 38-42 (2024)

95. Schweickert W.D., Pohlman M.C., Pohlman A.S., Nigos C., Pawlik A.J., Esbrook C.L., Spears L., Miller M., Franczyk M., Deprizio D. and Schmidt G.A., Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial, *The Lancet*, **373**(9678), 1874-82 (2009)

96. Semeraro N., Ammollo C.T., Semeraro F. and Colucci M., Coagulopathy of acute sepsis, In Seminars in thrombosis and hemostasis, Thieme Medical Publishers, **41**(06), 650-658 (2015)

97. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M. and Hotchkiss R.S., The third international consensus definitions for sepsis and septic shock (Sepsis-3), *Jama*, **315**(8), 801-10 (2016)

98. Sharma N., ProCESS Investigators. A Randomized Trial of Protocol-based Care for Early Septic Shock, *American Journal of Respiratory and Critical Care Medicine*, **190**(7), 827 (2014)

99. Shehabi Y., Bellomo R., Reade M.C., Bailey M., Bass F., Howe B., McArthur C., Seppelt I.M., Webb S. and Weisbrodt L., Sedation Practice in Intensive Care Evaluation (SPICE) Study Investigators and the ANZICS Clinical Trials Group. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients, *American Journal of Respiratory and Critical Care Medicine*, **186**(8), 724-31 (2012)

100. Sprung C.L., Sakr Y., Vincent J.L., Le Gall J.R., Reinhart K., Ranieri V.M., Gerlach H., Fielden J., Groba C.B. and Payen D., An evaluation of systemic inflammatory response syndrome signs in the Sepsis Occurrence in Acutely Ill Patients (SOAP) study, *Intensive Care Medicine*, **32**(3), 421-7 (2006)

101. Sprung C.L., Annane D., Keh D., Moreno R., Singer M., Freivogel K., Weiss Y.G., Benbenisty J., Kalenka A., Forst H. and Laterre P.F., Hydrocortisone therapy for patients with septic shock, *New England Journal of Medicine*, **358**(2), 111-24 (2008)

102. Ushiyama A., Kataoka H. and Iijima T., Glycocalyx and its involvement in clinical pathophysiologies, *Journal of Intensive Care*, **4**(59), 1-1 (2016)

103. Vaghela Hiral, Parmar Kokila and Mahyavanshi Jyotindra, Biogenic Synthesis of Gold Nanoparticles using Bark Extract of Bauhinia variegata: Antibacterial and *in vitro* Anticancer study, *Res. J. Chem. Environ.*, **28**(1), 48-56 (2024)

104. Veenstra D.L., Saint S., Saha S., Lumley T. and Sullivan S.D., Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis, *Jama*, **281**(3), 261-7 (1999)

105. Venkatesh B., Myburgh J., Finfer S., Webb S.A., Cohen J., Bellomo R., McArthur C., Joyce C.J., Rajbhandari D., Glass P. and Harward M., The ADRENAL study protocol: adjunctive corticosteroid treatment in critically ill patients with septic shock, *Critical Care and Resuscitation*, **15**(2), 83-8 (2013)

106. Vincent J.L., Opal S.M., Marshall J.C. and Tracey K.J., Sepsis definitions: time for change, *The Lancet*, **381**(9868), 774-5 (2013)

107. Vincent J.L., Rello J., Marshall J., Silva E., Anzueto A., Martin C.D., Moreno R., Lipman J., Gomersall C., Sakr Y. and Reinhart K., International study of the prevalence and outcomes of infection in intensive care units, *Jama*, **302**(21), 2323-9 (2009)

108. Vincent J.L., Sakr Y., Sprung C.L., Ranieri V.M., Reinhart K., Gerlach H., Moreno R., Carlet J., Le Gall J.R. and Payen D., Sepsis Occurrence in Acutely Ill Patients Investigators, Sepsis in European intensive care units: results of the SOAP study, *Critical Care Medicine*, **34**(2), 344-53 (2006)

109. Vincent J.L., The clinical challenge of sepsis identification and monitoring, *PLoS Medicine*, **13**(5), e1002022 (2016)

110. Vincent J.L., Current sepsis therapeutics, *E Bio Medicine*, **86**, 104318 (2022)

111. Vincent J.L. and Post E.H., Vasopressin: a first-line agent for septic shock?, *Nature Reviews Nephrology*, **12**(12), 718-9 (2016)

112. Wang C., Sun J., Zheng J., Guo L., Ma H., Zhang Y., Zhang F. and Li E., Low-dose hydrocortisone therapy attenuates septic shock in adult patients but does not reduce 28-day mortality: a meta-analysis of randomized controlled trials, *Anesthesia & Analgesia*, **118**(2), 346-57 (2014)

113. World Health Organization, Sepsis [Internet], Geneva, World Health Organization, [cited 2024 Oct 5], Available from: <https://www.who.int/news-room/fact-sheets/detail/sepsis#:~:text=Sepsis%20can%20affect%20anyone%2C%20but,multiple%20organ%20failure%20and%20death> (2024)

114. Zahar J.R., Timsit J.F., Garrouste-Orgeas M., Francais A., Vesim A., Descamps-Declere A., Dubois Y., Souweine B., Haouache H., Goldgran-Toledano D. and Allaouchiche B., Outcomes in severe sepsis and patients with septic shock: pathogen species and infection sites are not associated with mortality, *Critical care Medicine*, **39**(8), 1886-95 (2011)

115. Zarychanski R., Abou-Setta A.M., Kanji S., Turgeon A.F., Kumar A., Houston D.S., Rimmer E., Houston B.L., McIntyre L., Fox-Robichaud A.E. and Hebert P.C., Efficacy and safety of heparin in patients with sepsis: a systematic review and meta-analysis, *Critical Care*, **19**(1), 1-201 (2015).

(Received 21st October 2024, accepted 25th December 2024)